
 

 
NAVAL 

POSTGRADUATE 
SCHOOL 

 
MONTEREY, CALIFORNIA 

 

 
THESIS 

 

 
Approved for public release; distribution is unlimited 

THE FREQUENCY RESPONSE, IMPULSE RESPONSE 
AND TRANSFER FUNCTION OF AN OCEAN 

WAVEGUIDE 
 

by 
 

Walter B. Schulte III 
 

June 2004 
 

 Thesis Advisor:   Lawrence J. Ziomek 
 Second Reader: Roberto Cristi 



 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

THIS PAGE INTENTIONALLY LEFT BLANK 



 i

 REPORT DOCUMENTATION PAGE Form Approved OMB No. 0704-0188 
Public reporting burden for this collection of information is estimated to average 1 hour per response, including 
the time for reviewing instruction, searching existing data sources, gathering and maintaining the data needed, and 
completing and reviewing the collection of information. Send comments regarding this burden estimate or any 
other aspect of this collection of information, including suggestions for reducing this burden, to Washington 
headquarters Services, Directorate for Information Operations and Reports, 1215 Jefferson Davis Highway, Suite 
1204, Arlington, VA 22202-4302, and to the Office of Management and Budget, Paperwork Reduction Project 
(0704-0188) Washington DC 20503. 
1. AGENCY USE ONLY (Leave blank) 
 

2. REPORT DATE  
June 2004 

3. REPORT TYPE AND DATES COVERED 
Master’s Thesis 

4. TITLE AND SUBTITLE:  The Frequency Response, Impulse Response, and 
Transfer Function of an Ocean Waveguide 

6. AUTHOR   
Walter Barry Schulte III  

5. FUNDING NUMBERS 

7. PERFORMING ORGANIZATION NAME(S) AND ADDRESS(ES) 
Naval Postgraduate School 
Monterey, CA  93943-5000 

8. PERFORMING 
ORGANIZATION REPORT 
NUMBER     

9. SPONSORING /MONITORING AGENCY NAME(S) AND ADDRESS(ES) 
N/A 

10. SPONSORING/MONITORING 
     AGENCY REPORT NUMBER 

11. SUPPLEMENTARY NOTES  The views expressed in this thesis are those of the author and do not reflect the official 
policy or position of the Department of Defense or the U.S. Government. 
12a. DISTRIBUTION / AVAILABILITY STATEMENT   
Approved for public release; distribution is unlimited 

12b. DISTRIBUTION CODE 

13. ABSTRACT (maximum 200 words)  
 
In this thesis, the ocean was modeled as a waveguide with an ideal pressure – release surface, and an ideal rigid 

bottom.  The ocean waveguide was then treated as a linear, time – invariant, space – variant (TISV) filter or communication 

channel.  The filter is time – invariant because no motion was modeled and because the properties of the ocean were assumed 

to be constant.  The filter is space – variant because of the presence of the two boundaries, that is, the ocean surface and ocean 

bottom.   

                This thesis investigates the ocean as a linear TISV filter by evaluating 1) the complex frequency response, 2) the 

impulse response, and 3) the transfer function of the ocean with respect to depth.  It is shown that the TISV impulse response of 

the ocean contains information that can be used to help localize a target in range and whether the target is above or below the 

receiver.  Computer simulation results were obtained by evaluating the three filter functions for several different test cases. 

 
15. NUMBER OF 
PAGES  

65 

14. SUBJECT TERMS   
Anti – submarine warfare; ideal pressure – release surface, rigid bottom ocean waveguide model; 
linear, time – invariant, space – variant filters; complex frequency response, impulse response, and 
transfer function of the ocean; target localization 16. PRICE CODE 

17. SECURITY 
CLASSIFICATION OF 
REPORT 

Unclassified 

18. SECURITY 
CLASSIFICATION OF THIS 
PAGE 

Unclassified 

19. SECURITY 
CLASSIFICATION OF 
ABSTRACT 

Unclassified 

20. LIMITATION 
OF ABSTRACT 

 
UL 

NSN 7540-01-280-5500 Standard Form 298 (Rev. 2-89)  
 Prescribed by ANSI Std. 239-18 



 ii

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

THIS PAGE INTENTIONALLY LEFT BLANK 



 iii

Approved for public release, distribution is unlimited 
 

THE FREQUENCY RESPONSE, IMPULSE RESPONSE, AND TRANSFER 
FUNCTION OF AN OCEAN WAVEGUIDE 

 
Walter B. Schulte III 

Ensign, United States Navy 
Electrical Engineering (B.S.), University of California, Los Angeles, 2003 

 
 

Submitted in partial fulfillment of the 
requirements for the degree of 

 
 

MASTER OF  SCIENCE IN APPLIED SCIENCE (SIGNAL PROCESSING) 
 
 

from the 
 
 

NAVAL POSTGRADUATE SCHOOL 
June 2004 

 
 
 

Author:  Walter B. Schulte III 
 
 
Approved by:  Dr. Lawrence J. Ziomek 

Thesis Advisor 
 
 

Dr. Roberto Cristi 
Second Reader 

 
 

Dr. Donald Brutzman 
Chairman, Under Sea Warfare Academic Committee 



 iv

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

THIS PAGE INTENTIONALLY LEFT BLANK 



 v

ABSTRACT 
 
 
 
In this thesis, the ocean was modeled as a waveguide with an ideal pressure – 

release surface, and an ideal rigid bottom.  The ocean waveguide was then treated as a 

linear, time – invariant, space – variant (TISV) filter or communication channel.  The 

filter is time – invariant because no motion was modeled and because the properties of 

the ocean were assumed to be constant.  The filter is space – variant because of the 

presence of the two boundaries, that is, the ocean surface and ocean bottom.   

This thesis investigates the ocean as a linear TISV filter by evaluating 1) the 

complex frequency response, 2) the impulse response, and 3) the transfer function of the 

ocean with respect to depth.  It is shown that the TISV impulse response of the ocean 

contains information that can be used to help localize a target in range and whether the 

target is above or below the receiver.  Computer simulation results were obtained by 

evaluating the three filter functions for several different test cases. 
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I.  INTRODUCTION 

This chapter provides a discussion of ocean waveguide modeling.  This discussion 

will begin by presenting approaches taken by previous researchers.  It will include a brief 

history of the topic, as well as the definition of the goals of the thesis and the approach 

taken to reach them.  It also provides a brief summary of the mathematical framework 

used to describe ocean waveguide models. 

A. HISTORY 
The idea of treating the ocean as a communication channel has existed since the 

1960s.  For example, Ellinthorpe and Nuttall [1], Middleton [2], and Sostrand [3] 

proposed treating the ocean as a linear, time-varying, random filter.  They proposed four 

filter functions for the ocean communication channel: the impulse response, the 

frequency response, the bi-frequency function, and the spreading function, as well as 

filter correlation functions for each.  However, Ellinthorpe and Nuttall [1] and Middleton 

[2] refer to a transfer function rather than a frequency response.  Similarly, in the 1970s, 

Laval [4,5], for example, proposed the idea of treating the ocean as a linear, time-varying, 

space-varying random filter.  He used similar function definitions, and also discussed an 

angular spectrum function as well.  Unfortunately, none generated mathematical 

expressions for these functions, and they remained in a purely theoretical state.  

Moreover, the terms “frequency response” and “impulse response” were not well defined 

in terms of linear, time-variant, space-variant (LTVSV) system theory.  Another chief 

weakness of these filter-function models was that they were not related to solutions of a 

linear wave equation.   

B.  THE OCEAN AS A LINEAR, TIME-INVARIANT, SPACE-VARIANT 
(LTISV) FILTER 
This thesis investigates treating the ocean as a linear, time-invariant, space-variant 

(LTISV) filter or communication channel. The ocean was modeled as a waveguide with 

an ideal pressure-release surface, and an ideal rigid bottom.  The ocean - medium filter is 

assumed to be time-invariant because no motion was modeled and the properties of the 

ocean were assumed to be constant.  The filter is space-variant because of the presence of 

the two boundaries, that is, the ocean surface and the ocean bottom.  The time-invariant, 
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space-variant (TISV) complex frequency response of this ocean waveguide model is 

given in Ziomek[6].  It is based on solving the linear wave equation and satisfying all the 

boundary conditions associated with this ocean waveguide model. As shown in Ziomek 

[6], the TISV impulse response and TISV transfer function can be obtained from the 

TISV complex frequency response.   

The goal of this thesis was to 1) evaluate the complex frequency response over a 

range of frequencies, 2) compute the corresponding impulse response, 3) derive and 

evaluate the corresponding transfer function, and 4) determine what information could be 

obtained from the three different filter functions.  This thesis seeks to improve the 

understanding of ocean waveguides so that better algorithms for target localization in 

range and depth using either active or passive sonar can be obtained.  This thesis will 

show that the impulse response function was the most informative in that respect.  Once 

these functions were obtained, further restrictions were added to increase the relevance of 

the model to littoral combat.  The ocean was restricted to a depth of 100 meters and the 

distance between source and receiver in the waveguide was assumed to be less than 1 

kilometer.   

C.   DOD RELEVANCE 
Since the end of the Cold War, the focus of the Navy has shifted from the deep 

ocean into the littoral areas.  The littorals, as they are called, present unique 

complications for passive sonar that stem mostly from the interaction of sound signals 

with the ocean bottom and the ocean surface.  The fact that sound can bounce off the 

bottom and surface causes much reverberation that is detected at the receiving sonar 

array.  The reverberation is caused mostly by the multipath spreading in time due to the 

multiple bottom-surface interactions of sound rays, and the differing travel times of these 

rays.  Moreover, since modern submarine-quieting techniques improve often, it is 

increasingly important to analyze transient, broadband signals.  These broadband sources 

are often produced in an actual ocean environment for research purposes using an 

explosion.  However, they can also be generated by a submarine opening a torpedo hatch 

door in a combat situation.  Such transient noises may provide the only opportunity to 

locate modern, quieted submarines.  Subsequently, it is necessary to obtain algorithms 

that exploit these noise sources for target localization in range and depth.  This thesis 
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seeks to explore the behavior of a simulated broadband noise source in a shallow 

waveguide.  It also seeks to demonstrate the possibility of locating the depth and range of 

such a noise source. 

D.  SUMMARY 
Using the framework of linear filter theory, this thesis will explore the usefulness 

of three different ocean-medium filter functions.  This thesis will show that the time-

invariant, space-variant (TISV) impulse response of an ocean waveguide can be obtained 

from the inverse discrete Fourier transform of the corresponding TISV complex 

frequency response.  It will then be shown that this impulse response yields information 

about the range and depth of the source emitting the impulse.  The TISV transfer function 

will also be derived and evaluated to show the relationship between the magnitude 

response of an ocean waveguide and the angles of sound propagation from the source.   

E. THESIS ORGANIZATION 
This thesis is organized into five different chapters.  Chapter I provides an 

overview of linear filter theory as applied to ocean waveguides, Navy relevance of the 

research, and goals for the thesis.  Chapter II contains an overview of the three filter-

functions and a discussion of numerical approximations.  These approximations will be 

used to achieve the computational results presented in Chapter III.  Chapter III contains 

the simulated results of the ocean waveguide for several different range and depth 

separations between the source and receiver.  Chapter IV contains comparisons of the 

different cases and explanations of the results.  Chapter V, the final chapter, contains 

thesis conclusions and recommendations for future research in ocean waveguide 

modeling.  
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II. THE OCEAN AS A LINEAR FILTER 

A.  INTRODUCTION 
As explained in Ziomek [6], this thesis uses the framework of linear filter theory 

to model the propagation of sound in the ocean.  The assumption of transmitting a small-

amplitude acoustic pulse will be used.  Because of this assumption, it is then valid to use 

a linear wave equation to describe the propagation of a pulse between source and receiver 

in an ocean waveguide.  Since a linear wave equation is used, it is then valid to treat the 

ocean as a linear filter.  More specifically, it will be treated as a linear, time-invariant, 

space-variant (LTISV) filter. 

The three filter functions discussed in this thesis - the complex frequency 

response, impulse response, and transfer function - describe the simple waveguide model 

of the ocean, illustrated in Figure 2.1, where 1 1 2 2, ,c cρ ρ  and 3 3cρ are the characteristic 

impedances of media I (air), II (seawater), and III (ocean bottom), respectively.  The 

parameters iρ  and ic , 1, 2,3,i = are the constant ambient (equilibrium) densities (in 

kilograms per cubic meter) and speeds of sound (in meters per second) in each of the 

three fluid media, respectively.  Both the ocean surface and ocean bottom are modeled as 

plane, parallel boundaries, and the ocean is D meters deep.  The source distribution is a 

motionless, time-harmonic, point source located in medium II at a horizontal range r = 0 

meters and depth 0y y= meters where the cylindrical coordinates ( , , )r yφ are illustrated 

in Figure 2.2. 

B.  THE COMPLEX FREQUENCY RESPONSE OF THE OCEAN 

For an ideal pressure-release surface, ideal rigid bottom ocean waveguide model, 

the time-invariant, space-variant (TISV) complex frequency response of the ocean is 

given as follows [6]:  

2, 2, 2,

0 0

1
(2)

0 0
0

( , | ) ( , , , | )

1 sin( ) ( )sin( ), 0 ,
2

p

n n n

M M

N

Y r Y
n

H f H f r y y

j k y H k r k y y D
D

φ
−

=

=

= − ≤ ≤∑

r r
 (2.1) 

where  
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1 4INT 1 1
2P

DfN
c

  
= − +     

 (2.2) 

      

is the total number of propagating modes excited by the source with frequency f hertz, 

( )(2)
0H • is the zeroth-order Hankel function of the second kind, 

 
2,

2
2

2
2

1 ( / ) , ,

( / ) 1, ,
n

n n
r

n n

k f f f f
k

jk f f f f

 − ≥= 
− − <

 (2.3) 

 

is the propagation-vector component in the horizontal radial direction, in radians per 

meter, of the nth normal mode, 

 2 2 22 / 2 /k f cπ π λ= =  (2.4) 

is the wavenumber in medium II in radians per meter, 

 2(2 1)
4n

n cf
D
+

=  (2.5) 

is the cutoff frequency in hertz of the nth normal mode, and 

 
2,

(2 1)
2nY

nk
D

π+
=  (2.6) 

represents the propagation-vector component in the depth direction, in radians per meter, 

of the nth normal  mode.  In the far-field, that is, when 
2,

1
nrk r , 

 
2, 2, 2,

2,

(2)
0

2( ) exp , 1.
4n n n

n

r r r
r

H k r j k r k r
k r

π
π

  ≈ − −    
 (2.7) 

There are several important things to note.  First, the complex frequency response 

given by equation (2.1) depends on the actual value of the source depth 0( )y  and the 

receiver depth ( )y and not the difference between the two.  This is an indication that the 

ocean medium is space-variant in the depth direction.  Moreover, the number of 

propagating modes pN  given by (2.2), the cutoff frequency nf  for each mode given by 

(2.5), and the propagation vector component in the depth direction 
2,nYk given by (2.6) all 
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depend on ocean depth D .  Also, (2.1) is the complex frequency response for one 

frequency.  The complex frequency response over a specified range of frequencies from 

0 to maxf hertz can be obtained by evaluating (2.1) for each frequency in the range 0 to 

maxf hertz.   

C.   THE IMPULSE RESPONSE OF THE OCEAN 
The time-invariant, space-variant (TISV) complex frequency response is related 

to the TISV impulse response by the following equation [6]: 

 
( ){ } ( ) ( )0 0 0( , | ) , | , | exp 2 .M M MH f F h h j f dτ τ τ π τ τ

∞

−∞

= = −∫r r r r r r
(2.8) 

In other words, the complex frequency response is the Fourier transform of the 

impulse response with respect to the time difference τ .  The impulse response is 

therefore given by 

 ( ) ( ){ } ( ) ( )1
0 0 0, | , | , | exp 2 ,M f M Mh F H f H f j f dfτ π τ

∞
−

−∞

= = +∫r r r r r r  (2.9) 

that is, it is the inverse Fourier transform of the complex frequency response with respect 

to frequency .f   Since (2.9) is an inverse Fourier transform, the impulse response can be 

numerically evaluated by computing the inverse Discrete Fourier Transform (IDFT) of 

the complex frequency response as follows:    

 
( )

1

0

1 ( ) , 0,1,..., 1,
L

ql
M M L

q

h l H q W l L
L

−

=

= = −∑
 (2.10) 

where exp( 2 / )LW j Lπ= + .  Note that the total number of time samples L of the impulse 

response is equal to the total number of frequency samples Q of the complex frequency 

response (i.e., L = Q).  The relationship between the DFT bin spacing f∆ in hertz, the 

data record length T in seconds , the number of data points L, and the sampling frequency 

sf  in hertz is given by  

 1 1 .s

s

ff
T QT Q

∆ = = =  (2.11) 
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As can be seen from (2.11), the data record length T of the impulse response 

determines the spacing f∆ between frequency samples of the complex frequency 

response, that is,  

 1 .f
T

∆ =  (2.12) 

The duration of the impulse response T is the maximum travel time of the highest 

propagating mode in the frequency range 0 to maxf hertz with a frequency spacing of 1 

hertz.   

The maximum travel time, T, is actually an estimate, and is best calculated by 

computing the travel time, 
2,nrτ , of the highest propagating mode 1pn N= −  for each 

frequency in the range 0 to maxf hertz and then plotting it versus frequency, as shown in 

Fig. 2.3.  The maximum travel time will then become evident. The travel time of the nth 

propagating mode at a horizontal range of r meters from the source is given by [7] 

 
2, 2,

/
n r nr gr cτ =  (2.13) 

 

where the group speed is given by 

 

 
2,

2
2 1 ( / ) , , 1.

r ng n n pc c f f f f n N= − ≥ = −  (2.14) 

The maximum travel time T is then given by  

 

 
2, maxmax 0,1, 2,...., , 1.

nr pT f f n Nτ= ∀ = = −  (2.15) 

Once T is computed or obtained visually from a plot, f∆ can then be computed 

from (2.12).   

The total number of frequency samples Q to be taken of the complex frequency 

response was computed from the following equation:  

 max2 1fQ
f

= +
∆

 (2.16) 
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where f∆ is given by (2.12) and maxf is the maximum frequency component in hertz used 

to evaluate the complex frequency response.  Note that Q computed from (2.16) will be 

an odd number.  Once the value of Q is determined, it can be used to compute the 

sampling period sT in seconds from [see (2.11)] 

 1
sT

Q f
=

∆
 (2.17) 

The time samples of the impulse response correspond to time instants 

 , 0,1,..., 1,slT l Lτ = = −  (2.18) 

where L = Q. 

In order to evaluate (2.10), we took advantage of the conjugate symmetry 

property of the complex frequency response, which is  

 ( ) ( )*
0 0, | , | .M MH f H f− =r r r r  (2.19) 

Therefore, since Q is odd, the following equation was used to generate values for 

( )MH q  in (2.10) for ' '1, 2,..., 1q Q Q Q= + + −  where ( )' 1 / 2 :Q Q= −  

 ( ) ( )* ' ', 1, 2,..., 1.M MH q H Q q q Q Q Q= − = + + −  (2.20) 

Finally, we are able to compute the inverse Discrete Fourier Transform (IDFT) of 

the complex frequency response to generate the impulse response: 

 ( ){ } ( )
1

0 0 0
0

1
( , | ) , | , | , 0,1,..., 1

Q
ql

M M M q
q

h l IDFT H q H q W l L
Q

−

=

= = = −∑r r r r r r  (2.21) 

D. THE TRANSFER FUNCTION OF THE OCEAN 
Given a time-invariant, space-variant complex frequency response, it is possible 

to derive the corresponding time-invariant, space-variant, transfer function of the ocean 

by using the following general expression[6]: 

 ( ) ( ) ( )0 0 0, | , | exp 2M MH f H f j dπ
∞

−∞

= + • −  ∫r ν r r ν r r r  (2.22) 
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where f represents the transmitted frequencies in hertz, ( ), ,X Y Zf f f=ν  is a three-

dimensional vector whose components are transmitted spatial frequencies in cycles per 

meter in the X, Y, and Z directions, respectively, and 0 0 0 0.d dx dy dz=r  

The spatial frequencies , ,X Yf f  and Zf  are given by  

 0

0

,X
uf
λ

=  (2.23) 

 0

0

,Y
vf
λ

=  (2.24) 

 0

0

,Z
wf
λ

=  (2.25) 

where 

 0 0 0sin cos ,u θ ψ=  (2.26) 

 0 0 0sin sin ,v θ ψ=  (2.27) 

 0 0cosw θ=  (2.28) 

are dimensionless direction cosines with respect to the X, Y, and Z axes, respectively, 0θ  

and 0ψ are spherical angles that describe the directions of wave propagation at the 

transmitter.  In these expressions, 

 0 0 ,c f λ=  (2.29) 

where 0c is the speed of sound in meters per second in the waveguide, f represents the 

transmitted frequencies in hertz, and 0λ is the corresponding wavelength in meters.  

Therefore, the transmitted spatial frequencies describe the directions of wave propagation 

at the transmitter. 

From (2.22), we can write that 

( ) ( )

[ ]{ }

0 0 0

0 0 0 0 0 0

, | , , , | , ,

exp 2 ( ) ( ) ( ) .

M X Y Z M

X Y Z

H f f f f H f x y z

j f x x f y y f z z dx dy dzπ

∞ ∞ ∞

−∞ −∞ −∞

= ×

+ − + − + −

∫ ∫ ∫r r
(2.30) 
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Since the complex frequency response given by (2.1) depends only on the depths 

of the source and receiver, we will concentrate on trying to evaluate the following single 

integral: 

( ) ( ) [ ]{ }0 0 0 0 0 0 0, | , , , | , , exp 2 ( ) .M Y M YH f x f z H f x y z j f y y dyπ
∞

−∞

= + −∫r r  (2.31) 

Equation (2.26) can be rewritten as 

( ) ( ) ( )0 0 0 0 0 0 0, | , , , | , , exp 2 exp( 2 )M Y M Y YH f x f z H f x y z j f y dy j f yπ π
∞

−∞

= − +∫r r  (2.32) 

or 

( ) ( ) ( )0 0 0, , , | , , , | exp 2 exp( 2 )M Y M Y YH f r y f H f r y y j f y dy j f yφ φ π π
∞

−∞

= − +∫  (2.33) 

since from (2.1), 

2 , 2 , 2 ,

1
(2)

0 0 0 0
0

1
( , | ) ( , , , | ) sin( ) ( ) sin( ), 0 .

2

p

n n n

N

M M Y r Y
n

H f H f r y y j k y H k r k y y D
D

φ
−

=

= = − ≤ ≤∑r r  (2.34) 

Substituting (2.34) into (2.33) yields 

( ) ( )
2 , 2 , 2 ,

1
(2)

0 0 0 0
0

1
, , , | sin( ) ( ) sin( ) exp 2

2

exp( 2 ), 0 .

p

n n n

N

M Y Y r Y Y
n

Y

H f r y f j k y H k r k y j f y dy
D

j f y y D

φ π

π

−∞

=−∞

= − − ×

+ ≤ ≤

∑∫  (2.35) 

Since the integration is only with respect to 0y , (2.30) becomes 

( ) ( )
2, 2, 2,

1
(2)
0 0 0 0

0

1, , , | ( ) sin( ) sin( ) exp 2
2

exp( 2 ), 0 .

p

n n n

N

M Y r Y Y Y
n

Y

H f r y f j H k r k y k y j f y dy
D

j f y y D

φ π

π

− ∞

= −∞

= − − ×

+ ≤ ≤

∑ ∫ (2.36) 

Also, since the depth of the source 00 ,y D≤ ≤ and if we let  

 
2, 2,

2 ,
n nY Yk fπ=  (2.37) 

then the integral in (2.36) is given by 
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( ) ( )

( )

2,

2, 2,

2, 2,

0 0 0
0

sin 2 exp 2

{exp / 2 sinc[( ) ]exp[ ( ) ]
2
exp( / 2)sinc[( ) ]exp[ ( ) ]}

n

n n

n n

D

Y Y

Y Y Y Y

Y Y Y Y

f y j f y dy

D j f f D j f f D

j f f D j f f D

π π

π π

π π

− =

− − − − +

+ + − +

∫

 (2.38) 

In the above equations [see (2.19), (2.22), and (2.24)] 

 

 0
0 0

0 0

cos , 0 90 ,Y
v ff

c
β β

λ
= = ≤ ≤  (2.39) 

since direction cosine 0v  is also equal to 0cos β  where 0β  is measured from the positive 

Y axis.  Note that although 0β  can be between 0 and 180 , the angles of propagation of 

the normal modes in the waveguide are restricted between 0 and 90 .  Substituting (2.38) 

into (2.36), we have  

( )
2 , 2 ,

2 , 2 ,

2 , 2 ,

1
( 2 )

0
0

1
, , , | ( ) sin( )

4
{exp( / 2)sinc[( ) ]exp[ ( ) ]

exp( / 2) sinc[( ) ]exp[ ( ) ]}exp( 2 ),

p

n n

n n

n n

N

M Y r Y
n

Y Y Y Y

Y Y Y Y Y

H f r y f j H k r k y

j f f D j f f D

j f f D j f f D j f y

φ

π π

π π π

−

=

= − ×

− − − −

+ + + − + +

∑
 (2.40) 

which is the transfer function of the ocean with respect to depth.  It is important to note 

that the transfer function depends on the angle 0β via (2.34).  Therefore, (2.35) can be 

computed numerically by summing the response of each mode at a given frequency and 

angle 0β .  Thus, a response over 00 90β≤ ≤ can be obtained.   

E. SUMMARY 

By modeling the ocean as a linear, time-invariant, space-variant filter, three filter 

functions were obtained.  These functions are the complex frequency response, the 

impulse response, and the transfer function of the ocean.  The complex frequency 

response can be discretized and then related to the impulse response through the use of an 

inverse discrete Fourier transform.  The impulse response is a time-domain expression 

that yields useful information regarding the location of the sound source.  Lastly, a closed 

form expression for the transfer function of the ocean with respect to depth was obtained 



13 

from the complex frequency response.  The transfer function can be used to investigate 

the behavior of the ocean as a function of the angle of propagation of sound leaving the 

sound source.   
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III. COMPUTER SIMULATION RESULTS AND ANALYSIS 

A. OVERVIEW 
This chapter presents computer simulation results obtained by evaluating the 

following equations from Chapter II:  the time – invariant, space – variant (TISV) 

complex frequency response of the ocean given by (2.1), the TISV impulse response 

given by (2.21), and the TISV transfer function with respect to depth given by (2.40). 

These three ocean-medium filter functions were evaluated for the test cases shown in 

Table 3.1.   

 
 A B C D E 

1 

r = 300 m
y0 = 5 m
y = 5 m

∆y = 0 m

 

r = 300 m
y0 = 50 m
y = 50 m

∆y = 0 m

 

r = 300 m
y0 = 95 m
y = 95 m

∆y = 0 m

 

r = 300 m
y0 = 50 m
y = 5 m

∆y = − 45 m

 

r = 300 m
y0 = 50 m
y = 95 m

∆y = 45 m

 

2 

r = 500 m
y0 = 5 m
y = 5 m

∆y = 0 m

 

r = 500 m
y0 = 50 m
y = 50 m

∆y = 0 m

 

r = 500 m
y0 = 95 m
y = 95 m

∆y = 0 m

 

r = 500 m
y0 = 50 m
y = 5 m

∆y = − 45 m

 

r = 500 m
y0 = 50 m
y = 95 m

∆y = 45 m

 

3 

r = 1000 m
y0 = 5 m
y = 5 m

∆y = 0 m

 

r = 1000 m
y0 = 50 m
y = 50 m

∆y = 0 m

r = 1000 m
y0 = 95 m
y = 95 m

∆y = 0 m

r = 1000 m
y0 = 50 m
y = 5 m

∆y = − 45 m

r = 1000 m
y0 = 50 m
y = 95 m

∆y = 45 m
 

Table 3.1. Test Cases 
 

In this table, r is the horizontal range between source and receiver, 0y  is the depth of the 

source, y is the depth of the receiver, and 0y y y∆ = − is the depth offset between source 

and receiver.  These computer simulation results will show that an impulse response 

contains information on the range and depth separation between a receiver and a target.   

Unless indicated otherwise, it is important to note that a f∆ of 0.1 Hz was used to 

generate the computer simulation results.  This corresponds to a maximum travel time T 

of 10 seconds.  This was done to allow as many propagating modes as possible to be 
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included in the complex frequency response, and therefore in the impulse response, while 

still allowing the simulation to run within a reasonable time.  Allowing for a longer travel 

time greatly reduces the spikes that appear prior to minτ , which is the minimum possible 

travel time between source and receiver for a given range separation r , or simply /r c , 

where c is the sound speed in the waveguide.  These spikes are artifacts created by the 

computer simulation due to f∆ being too large.  Figure 3.1 illustrates the modal travel 

times for the highest – order propagating modes for a horizontal range of 1000r = meters 

versus frequency in an ideal pressure – release surface, rigid bottom ocean waveguide.    

In the following plots for the normalized impulse response, only 1 second worth of data is 

shown although 10 seconds of data is available.  The spikes in front of minτ can be 

explained by the fact that since 0.1f∆ =  Hz, all 30 seconds of data were not included in 

the impulse response.  Figure 3.2 demonstrates that extraneous spikes can be reduced by 

decreasing f∆ which increases 0T .   

 
Figure 3.1. Modal travel times for the highest – order propagating mode for a 

horizontal range r = 1000 m for each transmitted frequency. 
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Figure 3.2. Normalized impulse response (IR) for Case 3B, for a f∆ of .25 Hz versus a 
f∆ of .1 Hz.  Notice how reducing the bin spacing f∆  decreases the extraneous spikes. 

 
B. ZERO DEPTH OFFSET 

In terms of depth separation, the impulse response given by (2.21) can be used to 

determine whether the sound source (target) is at the same depth as the receiver.  For 

cases ‘A’ through ‘C’ (see Table 3.1), the impulse response (IR) plots are distinguished 

by alternating positive and negative spikes.  The spikes become much more regularly 

spaced as time elapses.  Notice that for each of the nine impulse response plots presented 

in this section, there is no distinguishable pattern for either the magnitude or phase of the 
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normalized complex frequency response (CFR).  The complex frequency response, for all 

intents and purposes, looks like noise, especially for cases ‘B’. 

For each of the cases ‘A’, the depth offset remained 0 and only the range was 

altered.  Cases 1, 2, and 3 had range separations of 300, 500, and 1000 meters, 

respectively.  Notice that even though 30 seconds of impulse response data should have 

been included to account for all the modes, the plots have relatively small extraneous 

spikes.  Also important to note is that the travel time 1τ  of the maximum amplitude spike 

(+1 or –1) in the impulse response always appears just after the minimum travel time minτ , 

as shown in Table 3.2.  We shall refer to these travel times as the maximum-amplitude 

travel times. 

 
Case minτ (sec) 1τ  (sec) 

1A 2.0000e-001 2.4049e-001 

2A 3.3333e-001 3.5898e-001 

3A 6.6666e-001 7.1796e-001 

 

Table 3.2. Minimum travel times versus maximum – amplitude travel times. 
 

Similar results were achieved for cases ‘B’ and ‘C’, where there was no depth 

offset.  The graphs appeared remarkably similar, with subtle differences that would not 

be relevant to localization in depth.   
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Figure 3.3. Magnitude and phase of complex frequency response (CFR) and impulse 
response (IR) for Case 1A. 
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Figure 3.4. Magnitude and phase of complex frequency response (CFR) and impulse 

response (IR) for Case 2A. 
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Figure 3.5. Magnitude and phase of complex frequency response (CFR) and impulse 

response (IR) for Case 3A. 
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Case minτ (sec) 1τ  (sec) 

1B 2.0000e-001 2.4049e-001 

2B 3.3333e-001 3.5898e-001 

3B 6.6667e-001 6.7997e-001 
 

Table 3.3. Minimum travel times versus maximum – amplitude travel times. 
 

A comparison between Tables 3.3 and 3.4 for cases ‘B’ and ‘C’ shows the 

maximum – amplitude spike at different points in time.  For case 1C, due to numerical 

errors, the maximum – amplitude spike actually arrives sooner than is physically 

possible.  The simulation was run again for case 1C, this time allowing 30 seconds worth 

of data to accumulate.  Even though all propagating modes were allowed to come in, the 

same results were achieved due to machine precision errors.  The goal of the tables, 

however, is to show that the maximum – amplitude travel time can be used to compute a 

good estimate of the range to the target.  In all three tables so far, the simulation was able 

to provide a maximum bound on the range through timing of the maximum – amplitude 

spike.   

 
Case minτ (sec) 1τ  (sec) 

1C 2.0000e-001 1.9999e-001 

2C 3.3333e-001 3.5898e-001 

3C 6.6667e-001 6.7997e-001 
 

Table 3.4. Minimum travel times versus maximum – amplitude travel times. 
 

Figures 3.6 through 3.11 show graphically the results shown by Tables 3.3 and 

3.4.  Notice that for each plot of the impulse response, the maximum – amplitude spike 

arrives shortly after the minimum travel time.  Moreover, for each of the cases ‘B’ and 

‘C’, the impulse response plots show spikes that alternate between positive and negative 

amplitude values, and show a similar pattern.   
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Figure 3.6. Magnitude and phase of complex frequency response (CFR) and impulse 

response (IR) for Case 1B. 
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Figure 3.7. Magnitude and phase of complex frequency response (CFR) and impulse 

response (IR) for Case 2B. 
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Figure 3.8. Magnitude and phase of complex frequency response (CFR) and impulse 
response (IR) for Case 3B. 
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Figure 3.9. Magnitude and phase of complex frequency response (CFR) and impulse 
response (IR) for Case 1C. 
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Figure 3.10. Magnitude and phase of complex frequency response (CFR) and impulse 

response (IR) for Case 2C. 
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Figure 3.11. Magnitude and phase of complex frequency response (CFR) and impulse 
response (IR) for Case 3C. 
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C. NEGATIVE DEPTH OFFSET 

Having already shown that a target at the same depth as the receiver can be 

localized in range, the qualitative nature of a negative depth offset will now also be 

shown.  Table 3.5 shows the minimum travel times versus maximum – amplitude travel 

times for cases ‘D’: 

 
Case minτ (sec) 1τ  (sec) 

1D 2.0000e-001 2.2499e-001 

2D 3.3333e-001 3.3548e-001 

3D 6.6667e-001 6.8797e-001 

 
Table 3.5. Minimum travel times versus maximum – amplitude travel times.  

 

Just as before, the maximum – amplitude travel time can be used to compute a 

good estimate of the range to the target.  As Figs. 3.12 through 3.14 show, the presence of 

a negative depth offset can be determined empirically from the impulse response plots.  

For each impulse response, the spikes are equally positive and negative at each point in 

time that they appear.   
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Figure 3.12. Magnitude and phase of complex frequency response (CFR) and impulse 

response (IR) for Case 1D. 
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Figure 3.13. Magnitude and phase of complex frequency response (CFR) and impulse 
response (IR) for Case 2D. 
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Figure 3.14. Magnitude and phase of complex frequency response (CFR) and impulse 
response (IR) for Case 3D. 
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D. POSITIVE DEPTH OFFSET 

Just as a negative depth offset has characteristics that manifest themselves in the 

impulse response plot, a positive depth offset has its own characteristics as well.  For 

each of the cases ‘E’, (Figures. 3.15 through 3.17), a positive depth offset of 45 meters 

was used.  Note the very distinctive pattern exhibited by the spikes in these figures.  

Table 3.6 demonstrates the range localization capability of the impulse response for a 

positive depth offset by showing how the maximum amplitude spikes arrive close to the 

minimum travel time /r c : 

 
Case minτ (sec) 1τ  (sec) 

1E 2.0000e-001 2.0349e-001 

2E 3.3333e-001 3.3498e-001 

3E 6.6667e-001 6.6747e-001 

 
Table 3.6. Minimum travel times versus maximum – amplitude travel times. 
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Figure 3.15. Magnitude and phase of complex frequency response (CFR) and impulse 
response (IR) for Case 1E. 
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Figure 3.16. Magnitude and phase of complex frequency response (CFR) and impulse 
response (IR) for Case 2E. 
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Figure 3.17. Magnitude and phase of complex frequency response (CFR) and impulse 
response (IR) for Case 3E. 
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E. TRANSFER FUNCTION OF THE OCEAN 

Having demonstrated the usefulness of the impulse response in determining 

range-to-target and positive or negative depth offset, it is now necessary to demonstrate 

the usefulness of the transfer function of the ocean with respect to depth.  This can best 

be done graphically.  For each of the cases, source depth is not used to evaluate the 

transfer function.  The mathematics of the transfer function equation require only that the 

receiver depth be used [see (2.40)].  The magnitude of the transfer function shows how 

the ocean responds to different launch angles 0β at the source. The test cases used to 

evaluate the transfer function are summarized in Table 3.7. 

 
 A B C 

1 300 m
5 m

r
y
=
=

 
300 m
50 m

r
y
=
=

 
300 m
95 m

r
y
=
=

 

2 500 m
5 m

r
y
=
=

 
500 m
50 m

r
y
=
=

 
500 m
95 m

r
y
=
=

 

3 1000 m
5 m

r
y
=
=

 
1000 m
50 m

r
y
=
=

 
1000 m
95 m

r
y
=
=

 

 
Table 3.7. Transfer function test cases 

 

The transfer functions for the preceding nine test cases were evaluated to 

demonstrate their dependence on frequency, range and receiver depth.  An inspection of 

(2.40) will reveal that the transfer function changes the most with a change in frequency.  

This is due to the fact that the spatial frequency Yf depends on frequency as launch 

angle 0β  is varied from 0 to90 .  Subsequently, the ( )sinc • function in (2.40) also 

depends on frequency.  As was the case with the complex frequency response, the Hankel 

function in (2.40) varies with frequency and horizontal range, and the sinusoid depends 

on the receiver depth y.  Unfortunately, there does not appear to be an observable trend as 

any of the variables ( ), ,f r y  is increased or decreased.  To illustrate this fact, the transfer 

function for cases ‘A’ are shown for source frequencies of 250, 500, 750, and 1000 Hz, 
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respectively, as Figs. 3.20 through 3.22.  The magnitudes of the transfer function are 

normalized to observe launch angle dependence. 

 
Figure 3.18. Case 1A, 250, 500, 750, and 1000 Hz 
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Figure 3.19. Case 2A, 250, 500, 750, and 1000 Hz 
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Figure 3.20. Case 3A, 250, 500, 750, and 1000 Hz 

 

Now that the lack of a general trend for increases in frequency has been 

established, the rest of the test cases will be shown for 250 Hz only.  Cases ‘B’ and ‘C’ 

are shown in order of increasing range as Figs. 3.23 through 3.28. These figures show 

how the ocean responds to different launch angles (angles of propagation) 0β  at the 

source. 
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Figure 3.21. Case 1B 

 

 
Figure 3.22. Case 2B 
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Figure 2.23. Case 3B 

 

 
Figure 3.24. Case 1C 
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Figure 3.25. Case 2C 

 

 
Figure 3.26. Case 3C 
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IV.  CONCLUSIONS 

A.   SUMMARY OF RESULTS 
In Chapter III, we effectively demonstrated that a time – invariant, space – variant 

(TISV) impulse response could be derived from a TISV complex frequency response 

using an inverse discrete Fourier transform (IDFT).  We further demonstrated that this 

impulse response could be used to determine approximate horizontal range – to – target 

and whether the target was above, below, at the same depth as the receiver.  Finally, we 

showed that the TISV transfer function with respect to depth could be used to determine 

which launch angle from the target would produce the maximum magnitude response of 

the transfer function.   

B.  POSSIBLE EMPLOYMENT SCENARIO 
Shallow water presents unique problems to both active and passive sonar systems 

due to multi – path propagation.  If the complex frequency response of the ocean can be 

estimated in real time, and if it can be treated as being time – invariant during the period 

of operation of a sonar system, then it can be used to compute the impulse response of the 

ocean using an IDFT.  This impulse response would yield a fairly accurate range – to – 

target estimate and whether the target is above or below the sonar system.   

C. RECOMMENDATIONS FOR FUTURE RESEARCH 
Since the time – invariant, space – variant impulse response contains information 

about the nature of the depth offset between the source (target) and receiver, future study 

should determine if it contains information about the size of the offset, as was the case 

with range.  If the amount of depth offset (positive or negative) could be estimated, this 

information together with the range estimate would be enough to localize the sound 

source. 

The waveguide model used in this thesis was based on the assumption of an ideal 

rigid bottom.  The fast bottom model described in Ziomek [6] should be explored since it 

is a more realistic model. Taking into account the effects of attenuation in both the ocean 

medium and ocean bottom should also be explored. 
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The transfer function equation was derived to give information about the response 

of the ocean for a given launch angle from the source.  The transfer function should be re-

derived with respect to receiver depth to give information about the response of the ocean 

for a given angle of arrival at the receiver.   

Lastly, for practical purposes, the MATLAB code used to compute our numerical 

results should be rewritten in JAVA or another compiled language in order to make faster 

calculations.   
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